Gaining Insight From Restoration Scenario Evaluations With Wood Stork Nest Effort Models

Michelle L. Petersen & Dale E. Gawlik Florida Atlantic University

Objectives

- 1. Examine the relationship between large-scale long-term datasets to determine parameters that explain variation in Wood Stork nest effort.
- 2. Use explanatory variables to predict Wood Stork nest effort under natural hydrologic conditions via Natural System Regional Simulation Model (NSRSM).

Model Extent

Nest Effort Model

- Seven a priori hypotheses
- Constructed a generalized linearized models (GLM)
 - Response Variable: Nest Effort
 - 1991-2009
 - N=19
 - Parameters: Water Depth,
 Recession, Reversals, Foraging
 Distributions
- (AICc)
 - Restricted maximum likelihood estimator in SAS PROC MIXED
- Jackknife validation

Nest Effort Results

- Best Model
 - Prey Concentration Hypothesis: Initial Water Depth, Pre-breeding Recession, Post-breeding Recession $(w_i = 0.90, R^2 = 0.94)$

Parameter	β	LCL	UCL
Intercept	2.09	1.78	2.39
Initial Water Depth	-0.02	-0.03	0.01
Pre-breeding Recession	3.26	2.42	4.11
Post-breeding Recession	1.33	0.56	2.10

Nest Effort Validation

NSRSM Application

- Simulates natural hydrology
 - Pre-drainage
 - Daily water depths
 - Jan. 1, 1965 Dec. 31, 2005
- Incorporates:
 - Climatic data & other refined layers
- Resolution 500 m x 500 m

NSRSM Application

- Predict NSRSM Wood Stork Nest Effort
 - -1991 2005
 - NSRSM-generated hydrologic variables
 - Initial water depth, Pre-breeding and post-breeding recession rates
 - Par. est. generated from EDEN nest effort models
- Regression analysis
 - NSRSM predicted nest effort vs. observed nest effort

NSRSM Results

- NSRSM-predicted nest effort \downarrow observed $(t_{0.5, 14} = -4.5, P < 0.001)$
- NSRSM pre-breeding and post-breeding recession rates \downarrow EDEN ($t_{0.5, 14} = -2.3$, P < 0.01; $t_{0.5, 14} = -10.0$, P < 0.001)

Summary

- 1. Under current conditions Wood Storks need:
 - Prey production
 - Continuous drydown
- 2. Appling present day hydrologic conditions to predrainage system = ↓ Wood Storks
 - Potential shift in importance of recession rates
 - Suggest that Wood Stork less driven by rapid recession rates in pre-drained Everglades

Acknowledgements

- Mario Alvarado
- Sonny Bass
- Dave Nelson
- Leonard Pearlstine
- Gawlik Lab
- Everglades National Park

